Search results for " stars: kinematics and dynamics"

showing 3 items of 3 documents

AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star

2012

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…

Shock waveAstrofísicaCiencias Astronómicasstars: kinematics and dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalISM: cloudsmassive [stars]general [X-rays]Radiative transferISM: clouds radiation mechanisms: non-thermal stars: individual: AE Aur stars: kinematics and dynamics stars: massive X-rays: generalAstrophysics::Solar and Stellar AstrophysicsBow shock (aerodynamics)kinematics and dynamics [stars]Solar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsCosmic dustPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NebulaAstronomy and Astrophysicsradiation mechanisms: non-thermalnon-thermal [radiation mechanisms]Astrophysics - Astrophysics of GalaxiesInterstellar mediumAstronomíastars: individual (AE Aur)stars: massiveStarsindividual (AE Aur) [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaclouds [ISM]Radio wave
researchProduct

The gaia-eso survey: dynamical analysis of the l1688 region in ophiuchus

2016

The Gaia ESO Public Spectroscopic Survey (GES) is providing the astronomical community with high-precision measurements of many stellar parameters including radial velocities (RVs) of stars belonging to several young clusters and star-forming regions. One of the main goals of the young cluster observations is to study of their dynamical evolution and provide insight into their future, revealing if they will eventually disperse to populate the field, rather than evolve into bound open clusters. In this paper we report the analysis of the dynamical state of L1688 in the $\rho$~Ophiuchi molecular cloud using the dataset provided by the GES consortium. We performed the membership selection of t…

Stars: formationPopulationFOS: Physical sciencesAstrophysics01 natural sciencesVirial theoremstars: pre-main sequence / open clusters and associations: individual: L1688 / stars: kinematics and dynamics / stars: formation0103 physical scienceseducation010303 astronomy & astrophysicsQCOpen clusters and associations: individual: L1688Solar and Stellar Astrophysics (astro-ph.SR)QBPhysicseducation.field_of_study010308 nuclear & particles physicsStar formationMolecular cloudVelocity dispersionAstronomy and AstrophysicsStars: kinematics and dynamicAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)OphiuchusStars: pre-main sequenceOpen clusterAstronomy and Astrophysics
researchProduct

The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon i

2017

Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young (~2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion …

astro-ph.SRStellar populationopen clustersand associations: individual: Chamaeleon IIndividual: Chamaeleon I [Open clusters and associations]Open clusters and associations: Individual: Chamaeleon I; Stars: Kinematics and dynamics; Stars: Pre-main sequence; Techniques: Spectroscopicastro-ph.GAstars: kinematics and dynamicsFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequence01 natural sciencesVirial theoremKinematics and dynamics [Stars]Stars: Kinematics and dynamic0103 physical sciencesCluster (physics)Mass segregationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsStellar evolutionQCSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBPhysicsPre-main sequence [Stars]open clusters and associations: individual: Chamaeleon I010308 nuclear & particles physicsVelocity dispersionAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxies[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]stars: kinematics and dynamics; stars: pre-main sequence; open clustersand associations: individual: Chamaeleon I; techniques: spectroscopicStar clusterAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsSpectroscopic [Techniques]Equivalent widthtechniques: spectroscopicQB799
researchProduct